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ABSTRACT 

A sufficient condi t ion  for a Banach  space X is given so t h a t  every weakly  

compac t  Chebyshev  subset  of X is convex. For this  purpose  a class 

broader than that of smooth Banach spaces is defined. In this way a 

former result of A. Brendsted and A. L. Brown is partially extended in 

every finite dimensional normed linear space and a known result in Hilbert 

spaces is proved in a different way. 

1. I n t r o d u c t i o n  

A subset M of a normed linear space X is called a C h e b y s h e v  se t  if to each 

point x of X there exists a unique point of M that  is nearest to x. It  is well known 

that  every closed convex subset of a Hilbert space is a Chebyshev set. A Banach 

space X is said to have the C h e b y s h e v  p r o p e r t y  if every Chebyshev subset 

of X is convex. It  is known that  every n-dimensional Euclidean space (L. N. H. 

Bunt [6], T. S. Motzkin [14], B. Jessen [11]) or, more generally, a smooth finite 

dimensional normed linear space (H. Busemann [7]) has the Chebyshev property. 

Also, there are examples of non-smooth spaces which have the Chebyshev prop- 

erty. In particular A. Brendsted ([3], [4]) constructed non-smooth n-dimensional 

normed linear spaces with the Chebyshev property for every n > 3. He also 

proved that  if n < 3, an n-dimensional normed linear space has the Chebyshev 
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property if and only if every exposed point of its unit ball is also a smooth point. 

It turns out that if n = 2 the latter property is equivalent to the smoothness of 

the unit ball. The spaces that A. Brondsted constructed have the above prop- 

erty. He also generalized such constructions for non-smooth reflexive Banach 

spaces. Later, A. L. Brown extended BrCndsted's characterization of spaces with 

the Chebyshev property for every normed linear space X with dim X = 4. It is 

unknown whether the same characterization holds for higher dimensions. 

In the infinite dimensional case N. V. Efimov and S. B. Stechkin ([9]) proved 

that  every weakly closed Chebyshev subset of a smooth and uniformly rotund 

Banach space is convex (see also [17]) and L. P. Vlasov ([16] or [17]) proved that  

every boundedly compact Chebyshev subset of a smooth Banach space is convex. 

Similar conclusions were also obtained by V. Klee ([13]). 

In the present paper we are concerned mainly with the convexity of the weakly 

compact Chebyshev sets. Our results partially extend those of A. Brcndsted and 

A. L. Brown in every finite dimensional linear space (see Corollary 1.2) and also 

give a unified approach to all the above mentioned results in the case of weakly 

compact Chebyshev sets. We begin with the following definition: 

Definition 1.1: Let X be a Banach space with unit ball B x  and S M  (Bx) the 

set of all functionals of X* which attain their norm at a smooth point of Bx.  

Then X will be called a lmos t  s m o o t h  if SM (Bx) is dense in X*. 

We note that  by the Bishop-Phelps Theorem (cf. [2]), every smooth Banach 

space is almost smooth. Also, as is known, for every finite dimensional normed 
t 

space X,  the set of functionals of X* which expose points of Bx  is dense in X* 

(see Theorem 2.2.9 of [15]). Therefore, if every exposed point of Bx  is also a 

smooth point then X is almost smooth. Moreover, if X is a reflexive space or, 

more generally, a Banach space with the RNP and every strongly exposed point 

of the unit ball is a smooth point, then by the Phelps-Bourgain Theorem (cf. [2]) 

X is almost smooth. Hence A. Brondsted's constructions are finite and infinite 

dimensional examples of'non-smooth but almost smooth Banach spaces. 

The following is the main result of the present paper: 

THEOREM 1.1: If X is an almost smooth Banach space then every weakly 

compact Chebyshev subset of X is convex. 

As an immediate consequence of Theorem 1.1 we get the following result which 

is directly related to that of A. Brondsted and A. L. Brown. 

COROLLARY 1.2: If X is a finite dimensional normed linear space such that every 

exposed point of Bx  is a smooth point then every bounded Chebyshev subset of 



Vol. 117, 2000 CONVEXITY OF THE WEAKLY COMPACT CHEBYSHEV SETS 63 

X is convex. 

The proof of Theorem 1.1 is based on the concept of the n-extreme points 

and the technique introduced in [12]. We are unable, in general, to extend these 

results in the case of unbounded Chebyshev sets. However, in the special case of 

a Hilbert space we prove the following known result as a consequence of Theorem 

1.1 and the fact that  a weakly closed set in a Hilbert space is a Chebyshev set 

if and only if its intersections with the balls centered at some point of it are 

Chebyshev sets (see Lemma 2.6). 

THEOaEM 1.3: If H is a Hilbert space then every weakly closed Chebyshev set 

of H is convex. 

Of course Theorem 1.3 is a Corollary of the relative work of N. V. Efimov and 

S. B. Stechkin, V. Klee and E. Asplund ([1]). It remains an open problem if a 

Hilbert space has the Chebyshev property. 

Finally, in the last part of the paper we prove some similar results for weakly* 

compact Chebyshev subsets of a dual almost smooth space and for bounded 

Chebyshev sets with the RNP. 

2. P r o o f s  o f  T h e o r e m s  1.1 a n d  1.3 

We begin with the definition of the notion of n-extreme points. Let X be a Banach 

space, L C X be a closed convex set and suppose that x C L. Then x is called 

an n - e x t r e m e  point of L (n • N) if x is in the relative interior of no (n + 1)- 

dimensional convex subset of L (see also [15]). The set of all n-extreme points 

of L is denoted by Exn (L). We also define E (L) = Un~__0 Ex~ (L). Evidently, 

if n -- 0 we get the usual notion of an extreme point of L. Also, if m < n then 

Ex,~ (L) C Exn (L). Let us define by 3v~ the set of closed faces of L that contain 

x. Since L • ~-~, 5r~ ¢ O. We set A~ -- NFe~-~ F. Evidently A~ is the smallest 

closed face of L that contains x. It is easy to see that x • Ex~ (L) iff dim A~ ~ n 

and x • relint A~. 

The following Lemma has been proved in [12] but we repeat the proof here for 

the sake of completeness. 

LEMMA 2.1: Let L be a weakly compact convex subset of a Banach space X .  
Then L -- E ( L ) w . 

Proof: If L is finite dimensional, then evidently L = E (L) = Exm (L) where 

m = dim L. If L is infinite dimensional let V be a weakly open basic neighborhood 

of a point x0 6 L. Since E (L) = [J,~=0 Ex~ (L) it suffices to prove that there 
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exists an m E N which depends on V such that V n Exm (L) 7L O. Suppose that 
k 

V is determined by the functionats f l , - . . ,  fk E X*. We set F = xo + ni=l Ker fi- 

Then F is an m-codimensional affine subspace of X for some m < k, x0 E F 

and F C V. Evidently, F n L is a non-empty compact convex subset of X 

and so Exo (F  N L) # 0 by Krein-Milman's Theorem. Let z E Exo (F N L). 
It is enough to prove that z E Exm (L). Suppose that z ~ Exm (L). Then 

there exists an (m + 1)-dimensional closed ball Bm+l with center at z such that 

Bm+l C L. Since F is a flat of codimension m and z E F being at the same time 

the center of an (m + 1)-dimensional closed ball Bin+l, there exists a segment 

[Xl,X2] C F N B m + I  C F N L  such that z is the midpoint of [Xl,X2]. Hence 

z ~ Exo (F N L), which is a contradiction. I 

Proof of Theorem 1.1: Let X be an almost smooth Banach space and M a 

weakly compact Chebyshev subset of X. Let also L = cony (M). Then L is 

weakly compact by Krein's Theorem (see Theorem 80 in [10]). By Lemma 2.1, 

L = E (L) TM, and since E (L) = U~__0 Ex,~ (L) and M is weakly compact it is 

enough to prove that Exn (L) C M for every n E N. By Milman's Theorem (see 

Theorem 74 in [10]) we have that Exo (L) C M. 
So let us suppose that for some n _> 1 there exists a x E Exn (L) \Exn-1 (L) 

such that x ~ M whereas Exn-1 (L) C M. We can suppose that x = 0. So there 

exists a unique face A0 of L such that dim Ao = n and 0 E relint (Ao). It is easy 

to see that the relative boundary cOAo of A0 is a subset of Exn-1 (L). Therefore 

OAo c M. 
Three kinds of projections will be used. Let Fn = span [A0]. Since Fn is a 

finite dimensional subspace of X there exists a closed subspace F~  of X such 

that X = F~  ® Fn and so we can define the projection Pv,  : X ~ Fn. Since F,~ is 

finite dimensional, Pv, is weak-norm continuous. We also define POAo : Fn\ {0} -+ 

OAo where POAo (x) = {tx : t > 0} N OAo, for every x E F,~\ {0}. The mapping 

POAo is well defined and continuous. Finally, let us also consider the mapping 

PM: X --~ M where EM (X) is the unique nearest point of x in M. This mapping is 

norm-weak continuous. Indeed, let (Xn)n be a sequence which strongly converges 

to a x E X. Then for every n, 

I I] x - PM ( x ) l l -  Ilxn - PM (zn)ll  I = Id(x,M) - d(xn, M)l <_ IIz - Xnll 

and 

Therefore, 

I II z - PM ( x n ) l l  - -  I lxn - -  PM ( x n ) l ]  I --< 115 - -  x ~ l l "  

I I1~ - PM ( x ) l l  - IIx - PM ( x - ) l l  I ~ 2 I1~ - -  x - I I  
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so IIx - FM (x~)ll + IIx -- P ,  (x)ll. 
Since M is weakly compact it is enough to prove that  Pm (x) is the unique 

limit point of the set {PM (Xn) : n • N}. So let w be a limit point of this set. By 

the weak lower semicontinuity of the norm ] I x -  wI] <_ l iminf ] I x -  PM (Xn)I] = 

]Ix -- PM (X)lI. Since w • M this can happen only if w = PM (x). 
With respect to M and F ~  two cases are distinguished: 

CASE 1: M N F ~  = 0. We define the m a p p i n g R :  Ao--+ OAo w h e r e R ( x )  = 

POAo ( PF,~ ( PM (X))), x • A0. Since PM (x) • M and M n F ~  = 0, PM (z) ~ F~ 
and so PF,, (PM (x)) • Fn\ {0}, for every x • A0. Therefore R is a well defined 

mapping. By the continuity properties of the composed functions PM, PF,~ and 

POAo we conclude that  R is norm-norm continuous. Since OAo C M, R (x) = x 
for every x E OAo and so R is a retraction of the convex n-dimensional closed 

set A0 onto its relative boundary OAo, which is a contradiction by Brouwer's 

Theorem (cf. [8]). 

CASE 2: M n Fn J- ¢ 0. 

LEMMA 2.2: There exists a g • X* and an a > 0 such that M n F~ C 
g-1 ([a, + ~ ) )  n L n F ~ .  

Proof: Let us consider the weakly compact convex set L n F ~ .  Since F ~  is 

complementary to F,~ = span [A0] and A0 is a face that  contains 0, it is easy to 

see that  0 • Exo (L n F~). Since 0 ~ M there exists a weakly open nbd V of 0 

such tha t  V N M = 0. By Choquet 's  Lemma (see Lemma 73 in [10]) there exists 

g • X* and a a > 0 such that  the slice S = {x • L N F ) :  g (x) < a} is contained 

in V N L N F ~  and so M NF~ NS = 0. Hence M AF~ c g-1 ([a, +oo) ) N L n F ~ .  

I 

We set A1 = g-1 ([a, +oo)) N L n F~ .  The set A1 is a non-empty weakly 

compact  convex subset of X.  Clearly A0 N A1 = 0 and by the previous Lemma 

M N F ~  C A1. We also set B(x , r )  = { y e X : i l x - y i l < r }  and /~ (x , r )  = 

{ y • X : l l x - y i i < r }  f o r x • X a n d r _ > 0 .  

LEMMA 2.3: There exists a zo • X and an ro > 0 such that Ao C B (zo, to) and 

A1 n B (z0, r0) = O. 

Proof." The sets A0, A1 are weakly compact disjoint convex subsets of X and 

so by the Hahn-Banach  Theorem there exists an f E X* and c > 0 such tha t  

max~EA o f (x) < c < minx'EA1 f (X'). Since A0, A1 are bounded and SM (Bx) is 

dense in X* we can suppose that  f • SM (Bx). We can also suppose that  ]lfl] = 
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1. So there  exists a smooth  point Xo E Sx such tha t  f (xo) = 1. Let  zn = -ncxo, 
rn = (n + 1) c, n E N. We observe that  the balls Bn = B (-ncxo, (n + 1) c) are 

suppor ted  at the smooth  point  CXo by the hyperplane H = f - 1  (c). As is well 
O 

known (see Lemma 3 in [17]) UneN Bn = f - 1  ( ( - e c ,  c)). 
O 

We will prove tha t  there  exists a no E N such tha t  the open ball B~o contains 

A0. Indeed,  in the opposite case there  exists a sequence (Yn)neN of points of Ao 
O 

such tha t  for every n E N, Yn ~ B~. Since Ao is compact  we can suppose tha t  
0 

(Yn)nEN converges to a point Y0 E Ao. Evident ly  Yo ~ B,~ for every n E N and so 

f (Y0) -> c, which is a contradict ion because f (x) < c for every x E A0. Finally, 

since B (zn , rn)  C f - 1  ( ( - c o ,  c]), A1 M B(zn, rn) -- ~ for every n E N. We set 

zo = Zno and ro = rno. I 

Let us define D = {x E X : x---- tz + ( 1 -  t) z0, z E OAo,t E [0,1]}. 

LEMMA 2.4: For every x E D we have that PM (X) ~ Fn 1. 

Proof: Let  x E D. Then  there exists a z E OAo, t E [0,1] such tha t  x = 

tz + ( 1 - t ) z o .  Since OAo C M, PM(X) E S ( x ,  l l x - z t l )  c B(zo, lIzo-zl]) c 

B (Zo, r0). If PM (x) E F~ then PM (x) E Fn l @ M C A1 as well. But  then 

B (z0, to) M A1 ¢ 0, a contradiction. I 

We define the mapping R': D -+ OAo where R' (x) = POAo (PFn (PM (x))),  

x E D. By the previous Lemma,  PF, (PM (x)) E Fn\ {0} and so R'  is well 

defined. As in case 1 we can verify tha t  R'  is a norm-norm continuous re t ract ion 

of D onto OAo. But  D is a star convex set with Zo as a center and so it is 

contract ible  at the point Zo. Therefore  OAo should be contractible at the point  

R '  (z0), which is a contradict ion by Brouwer's Theorem.  The  proof  of Theorem 

1.1 is complete.  I 

Proof of Theorem 1.3: Let us denote  by (., " / t h e  inner product  in H .  

LEMMA 2.5: Let  H be a Hilbert space and x, y E H. Then for every A E (0, 1) 

we have tha t  B (x, I[x - YlI) N B (0, IlY]I) C S (Ax, IIAx - Ytl) M B (0, IlYll)- 

Proof: It  is enough to prove tha t  if w E g such tha t  fix - w[[ _< fix - y[[ and 

Iiw[I -< [[yl[, then  flax - wl] < flax - y[[ or, equivalently, 

1 
- 2  <x, w} _< - 2  (x, y} + ~ ((y, y} - (w, w}) for every A E (0, 1). 

Since I[wi[ < [[y[[ and A E (0, 1) it suffices to show tha t  - 2  (x, w} _< - 2  (x, y) + 

(y, y) - (w, w>. "But this is equivalent to the assumption tha t  [Ix - w[[ _< fix - y[[. 

I 
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LEMMA 2.6: Let H be a Hilbert space. Then M is a weakly closed Chebyshev 

subset of H if and only i f  for every z E M and every r > 0 the set B (z , r )  N M 

is a weakly compact Chebyshev subset of H. 

Proof: Let M be a weakly closed Chebyshev subset  of H ,  z E M and r > O. 

Evident ly  B (z, r)  N M is weakly compact .  I t  is also easy to prove t ha t  PM: H --~ 

M is n o r m - n o r m  continuous. Indeed, if (xn)~ is a sequence in H which s t rongly 

converges to a x E H ,  then  since M is boundedly  weakly compac t  it can be proven 

(as in the  case where M is weakly compact )  tha t  (PM (Xn))n weakly converges 

to PM (X) and I Ix -  PM (Xn)ll --+ tl x - P M  (x)l[. But  then (Pm (Xn)) n s t rongly  

converges to PM (x). 

We can suppose  t ha t  z = 0. Let x E H .  If PM (x) E B (0, r) n M then  PM (x) 

is the unique point  of B (0, r)  n M tha t  is nearest  to x. If PM (x) ~ 13 (0, r)  n M 

then  I[PM (x)[ I > r. We set hx = {A e [0, 1]: [IBM (Ax)] I = r}. Since PM is norm-  

norm continuous,  PM (0) ~- 0 and tIPM (x)i t > r; the set Ax is a non -empty  closed 

subset  of [0, 1]. Let  ~0 = minAx.  Then  IIPM ()~oX)[] = r and, by L e m m a  2.5, we 

have t ha t  B (x, ]ix - PM (A0x)I])N(B (0, r)  N M)  C B (A0x, []A0x - PM (A0z)]])n 

(B (0, r)  n M )  = {PM (A0x)}. This  means  tha t  PM (~oz) is the unique point  of 

B (0, r)  N M which is nearest  to x. Therefore  B (0, r)  N M is a weakly compac t  

Chebyshev  subset  of  H .  

To prove the converse let M C H such tha t  B (z, r) N M is a weakly compac t  

Chebyshev  subset  of H for every z C M,  r > 0. Obviously M is weakly closed. 

We can suppose  t ha t  0 E M and z = 0. Let  x E H \  {0}. We set r -- 2IIxl[ and  

M~ = 13 (0, r ) N M .  Since [Ix-PM~ (x)II ~- I[x-011 = [[xlI, B (x, II x - PM~ (x)II) c 

B ( 0 ,  r) .  S o B ( x ,  I Ix - -PM~(X)  I I ) N M =  B(x ,  IIX-PM~(X) I I ) N B ( O , r ) N M =  

{PM~ (x)}. T h a t  is, PM. (x) is the unique point  of M which is neares t  to x. 1 

T h e  proof  of  T h e o r e m  1.3 follows immedia te ly  from L e m m a  2.6 and Theo rem 

1.1. I 

NOTE 1: Using a similar proof  to tha t  of Theo rem 1.1 the following can be 

proven: 

THEOREM 2.7: I f  X is an almost smooth dual space, then every weakly* compact 

Chebyshev subset of X is convex. 

NOTE 2: A point  x of a closed convex set L is an n - d e n t i n g  point  of L if: (a) 

x is an n -ex t r eme  point  of L and (b) x is a point  of continuity of the  ident i ty  

m a p  idL: (L, weak) --+ (L, norm). In [12] it was proved tha t  if the set L has 
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the RNP, then it is the weak closure of its n-denting points. Using exactly the 

same methods,  the notion of n-denting points in place of n-extreme points and 

the Troyanski Lin Lemma in place of Choquet 's  Lemma, the following result can 

be proven: 

THEOREM 2.8: Let  X be an almost  smoo th  Banach space and M a bounded 

C h e b y s h e v  subse t  o f  X such that  the restrict ion o f  the  project ion PM: X -+ M 

in every  f ini te  dimensional  subspace o f  X is norm-weak  continuous and the set  

L = ~ ( M )  has the  RNP.  Then  - ~  = L, that  is, ~ is convex. 

R e f e r e n c e s  

[1] E. Asplund, Chebyshev sets in Hilbert space, Transactions of the American 
Mathematical Society 144 (1969), 235-240. 

[2] R. Bourgin, Geometric aspects of  convex sets with the Radon-Nikodf~m property, 

Lecture Notes in Mathematics 993, Springer-Verlag, Berlin, 1983. 

[3] A. Brcndsted, Convex sets and Chebyshev sets I, Mathematica Scandinavica 17 

(1965), 5-16. 

[4] A. Br0ndsted, Convex sets and Chebyshev sets II, Mathematica Scandinavica 18 

(1966), 5-15. 

[5] A. L. Brown, Chebyshev sets and facial systems of convex sets in finite dimensional 

spaces, Proceedings of the London Mathematical Society 41 (1980), 297-339. 

[6] L. N. H. Bunt, Contributions to the theory of  convex point sets, (Dutch) Ph.D. 
Thesis, University of Croningen, 1934. 

[7] H. Busemann, Note on a theorem on convex sets, Matem. Tidsskr B (1947), 32-34. 

[8] J. Dungundji, Topology, Allyn and Bacon, Boston, 1966. 

[9] N. V. Efimov and S. B. Stechkin, Approximative compactness and Chebyshev sets, 

Soviet Mathematics Doklady 2 (1961), 1226-1228. 

[10] P. Habala, P. Hajek and V. Zizler, Introduction to Banaeh Spaces, Matfyz. Press, 

1996. 

[11] B. Jessen, Two theorems on convex point sets (Danish), Matem. Tidsskr B (1940), 

66-70. 

[12] V. Kanellopoulos, Criteria for convexity in Banach spaces, to appear in Proceedings 

of the American Mathematical Society. 

[13] V. Klee, Convexity of  Chebyshev sets, Mathematische Annalen 142 (1961), 292- 

304. 

[14] T. S. Motzkin, Sur quelques propridtds caxact~ristiques des ensembles born~s non 

convexes, Rend. Reale Acad. Lincei, Classe Sci. Fis., Mat. Nat. 21 (1935), 773-779. 



Vol. 117, 2000 CONVEXITY OF THE WEAKLY COMPACT CHEBYSHEV SETS 69 

[15] R. Schneider, Convex Bodies. The Brun-Minkowski Theory, Cambridge University 

Press, 1993. 

[16] L. P. Vlasov, Chebyshev sets in Banach spaces, Soviet Mathematics Doklady 2 

(1961), 1373-1374. 

[17] L. P. Vlasov, Approximative properties of  sets in normed linear spaces, Russian 

Mathematical  Surveys 28~ No. 6 (1973), 1 66. 


